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 INTRODUCTION 

 Chronic obstructive pulmonary disease (COPD) and inflam-
matory bowel diseases (IBDs) are mucosal inflammatory dis-
eases affecting the respiratory system and gastrointestinal tract, 
respectively. COPD affects 64 million people worldwide and 
is the fourth leading cause of death. 1  IBD has a prevalence 
of     >    300 / 100,000 globally and there has been a dramatic increase 
in the incidence of IBD over the last 50 years. 2,3  COPD and IBD 
are both chronic diseases, which are driven by recurrent cycles 
of inflammation that lead to tissue damage and remodeling, 
which progressively worsen symptoms. There are no cures for 
either disease and both require lifelong health maintenance, for 
which current therapies are suboptimal. 4 – 6  Many of the similari-
ties in the pathological features of COPD and IBD are a result of 
the common physiology of the respiratory and gastrointestinal 
systems.  

 Common physiology of the respiratory and gastrointestinal 

tracts 

 Structurally, the respiratory and gastrointestinal tracts have 
many similarities. 7,8  Both have an extensive, highly vascu-
larized, luminal surface area, 9 – 12  which is protected by a 
selective epithelial barrier 13 – 15  and an overlying mucus-gel 
layer 16,17  from commensal bacteria, pathogens, and foreign 
antigens. These epithelial surfaces cover a submucosal layer 

of loose connective tissue and mucosa-associated lymphoid 
tissue, composed of resident lymphocytes. This lymphoid 
tissue regulates antigen sampling, lymphocyte trafficking, and 
mucosal host defense. 18,19  Respiratory and gastrointestinal 
epithelia share a common embryonic origin in the primitive 
foregut, 20,21  which may account for their similarities. However, 
it is most likely that it is the similar inflammatory and immune 
components of these organs that are the cause of the overlap 
in pathological changes in respiratory and intestinal mucosal 
diseases.   

 Chronic obstructive pulmonary disease 

 COPD is an umbrella term describing a group of conditions 
characterized by prolonged airflow obstruction and loss of the 
functional capacity of the lungs. Patients suffer from chronic 
bronchitis and emphysema that lead to breathing difficulties 
(dyspnea). 22  Symptoms are induced by exaggerated and chronic 
inflammatory responses to the noxious insult of smoke expo-
sure, with periodic exacerbations of disease typically caused by 
bacterial or viral infection. 23  Smoking is the major causal risk 
factor in COPD in westernized countries, but wood smoke and 
pollution are important in other areas, and there are genetic 
and epigenetic components. 24  Recent studies have shown that 
exposure to respiratory infections or hyperoxia in early life may 
also contribute to the development of COPD. 25,26    
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 Inflammatory bowel disease 

 IBD is a term that describes a group of inflammatory dis-
eases of the gastrointestinal tract. Ulcerative colitis (UC) 
and Crohn ’ s disease (CD) are the two most common forms 
of IBD. 27  Physiologically, UC and CD are quite distinct. UC 
is characterized by continuous, superficial ulceration of the 
colon, whereas CD manifests with transmural, sporadic 
(skip) lesions and may occur at any point along the digestive 
tract. 28,29  Both conditions are associated with excessive daily 
bowel movements, severe abdominal pain, diarrhea, weight 
loss, malnutrition, and intestinal bleeding. The causes of IBD 
are unclear; however, several factors are known to contribute 
to the onset of the disease including genetic risk, environ-
mental stress, the intestinal microbiome, and inflammatory 
dysfunction. 30    

 Inflammatory organ cross-talk in COPD and IBD 

 It is widely accepted that secondary organ disease occurs in both 
COPD and IBD. 31 – 37  There is much recent clinical interest in 
intestinal manifestations of COPD, and an increasing number 
of studies has highlighted the prevalence of pulmonary inflam-
mation in IBD. At an epidemiological level, there is a strong 
association between the incidence of COPD and CD. 38 – 40  
A population-based cohort study performed by Ekbom  et al. , 39  
showed that the risk of CD in COPD sufferers was 2.72 times 
higher than that in healthy controls and greater than the risk 
reported for smoking alone. There is also a familial risk factor, 
with an increased risk of CD among the first-degree blood rela-
tives of COPD sufferers, although shared environmental factors 
may account for this. Specific intestinal manifestations of COPD 
include atrophic gastritis and nutritional absorption deficiency 
in the small intestine. 34,41  

 Conversely, COPD has been shown to be a significant mortal-
ity factor among CD sufferers, 38,40  with standardized mortal-
ity ratios of 2.5 – 3.5 for COPD in the CD population. Kuzela 
 et al.  42  demonstrated a high incidence of abnormal pulmonary 
function in both CD and UC patients, despite a lack of radio-
logical abnormalities. Similar findings by Tzanakis  et al.  31,43,44  
led them to propose that patients suffering from IBD should 
undergo pulmonary evaluation including physical examination, 
chest X-ray, and pulmonary function testing. Black  et al.  33  per-
formed a literature survey that identified 55 articles citing tho-
racic disorders in IBD patients, with large airway involvement 
accounting for 39 %  of these associations. Three more specific 
studies of randomly selected IBD patients showed incidence 
rates of pulmonary organ involvement at 44, 45  48, 46  and 50 % . 47  
The symptoms manifested as interstitial lung disease, increased 
numbers of alveolar lymphocytes, and a reduction in the 
diffusion capacity of the lung. Pulmonary involvement was 
more likely in UC, but was still significant in CD. 

 Hence, there is a clear but undefined link between inflamma-
tory diseases in the respiratory and intestinal systems. Although 
the associations have been clearly identified in the clinical 
literature, there have been few basic research studies that have 
investigated the mechanisms of the inflammatory cross-talk 
involved.    

 COMMON RISK FACTORS IN COPD AND IBD 

 Both COPD and IBD are multifactorial diseases and share 
many aspects of the classical  “ triad ”  of risk factors: environ-
mental factors, genetic susceptibility, and microbial involve-
ment. In addition, both conditions exhibit clear signs of 
immunological dysfunction in their pathologies. However, 
although smoke or particulate inhalation is a critical environ-
mental factor for COPD, the corresponding factors for IBD are 
ill-defined. Conversely, although there is a clear link between 
the intestinal microbiome and IBD, the potential of an intrinsic 
lung microbiome as a risk factor in COPD has only recently 
emerged.  

 Smoking as a risk factor for COPD and IBD 

 Cigarette smoking is the single most important risk factor in 
COPD. Approximately 80 %  of people with COPD are past or 
present smokers. Toxins and particulate matter in inhaled smoke 
induce acute inflammation in the airways. With repeated insult, 
inflammation becomes chronic and damages the airway epithe-
lium and lung tissue. 48 – 50  Eventually this leads to remodeling 
of the respiratory epithelium, emphysema, and chronic disease. 
However, only between 15 and 50 %  of all smokers develop 
COPD, indicating that smoke inhalation alone is not sufficient 
to induce disease 51,52  and that other risk factors are likely con-
tribute to the development of COPD. Twin and familial studies 
have suggested the involvement of genetic factors, with first-
degree relatives of COPD sufferers at increased risk. 53,54  

 Smoking is also a risk factor for IBD and significantly increases 
the risk of developing CD by threefold. 55 – 59  In contrast, and 
surprisingly, the prevalence of UC among smokers is low, with 
smoking alleviating symptoms of disease. 59,60  This is exempli-
fied by familial studies of siblings who are genetically susceptible 
to IBD. In these studies, smokers were shown to be more likely 
to develop CD and non-smokers to develop UC. 61  Nevertheless, 
ex-smokers seem to be at increased risk of UC than those who 
have never smoked. 62 – 64  

 The issue is further complicated when incidences of smokers 
and IBD are correlated as a whole. Eastern countries tend to 
have a much higher smoking rate than do western countries; 1  
yet western countries have a higher incidence of CD, but not 
UC, compared with eastern countries. 65,66  The lack of epide-
miological correlation between smoking and CD incidence 
in the east – west divide suggests that, like COPD, smoking by 
itself is not sufficient to induce IBD. Studies in animal mod-
els of CD-like colitis have demonstrated that smoke exposure 
exacerbates existing colitis in wild-type animals. 67 – 69  This sug-
gests that smoking can augment existing mucosal inflammation, 
although no consensus on mechanism has been achieved. Thus, 
although smoking has an obvious impact on both respiratory 
and gastrointestinal health, the nature of these phenomena is 
poorly understood.   

 Genetic risk of COPD and IBD 

 Both COPD and IBD have known genetic risk factors. To 
date, four genetic risk factors have been formally identified 
for COPD. Deficiency of  �  1  anti-trypsin (A1AT), an enzyme 
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and a serum trypsin inhibitor that protects against protease 
remodeling in the airway, accounts for 2 %  of COPD in the 
population. 70,71  Recently, genes for  � -nicotinic acetyl choline 
receptor ( CHRNA3 / 5 ), 72  hedgehog-interacting protein 
( HHIP ), 73,74  and iron-regulatory protein 2 ( IREB2   ) 75,76  have 
been shown to be potential susceptibility loci for COPD. 
However, functional end points have yet to be determined for 
how these genes influence the development of COPD. 

 Both CD and UC are known to have genetic risk factors, and 
both ethnic and familial associations have been shown. 54,77,78  
Mutations in genes for nucleotide-binding oligomerization 
domain containing 2 ( NOD2 ), 79 – 81  autophagy-related protein 
16-1 ( ATG16L1 ), 82,83  interleukin-23 receptor ( IL23R ), 84,85  and 
immunity-related guanosine-5 � -triphosphatase family M pro-
tein ( IRGM  86 ) have been shown to dramatically increase the 
risk of CD. A recent study has also identified a NOD2 muta-
tion in COPD populations offering a possible link between 
this condition and CD. 87  These genes code for proteins that 
control responses to infection at the intestinal mucosa and 
regulate autophagy. Thus, a paradigm has developed that a 
defect in bacterial clearance in CD may be one of the key triggers 
for disease onset. Polymorphisms of human leukocyte antigen 
class II genes also have a strong association with UC, suggesting 
that lymphocyte regulation is an important factor in its deve-
lopment. 88,89  Recent studies have made substantial progress 
in understanding gene associations with UC. Among the new 
susceptibility loci identified are laminin subunit  � -1 ( LAMB1 ), 90  
extracellular matrix protein 1 ( ECM1 ), 91  hepatocyte nuclear 
factor 4- �  ( HNF4A ), 90  and cadherin-1 and cadherin-3 
( CDH1  and  CDH3 , respectively). 90  These genes are involved 
in maintaining epithelial barrier integrity, 78  suggesting that 
a dysfunction in the epithelial barrier may predispose to UC. 

 It is possible that genetic risk factors may also contribute to 
the association between COPD and IBD.  HHIP  is also important 
in the development of the intestinal crypt axis, 92  and further 
studies are required to identify whether this gene contributes 
to disease overlap between COPD and IBD. The diversity of 
gene susceptibility loci for both COPD and IBD suggests that 
susceptibility to these conditions may involve multiple genes 
and alleles that couple with environmental triggers to induce 
disease in some individuals.   

 Disruption of the microbiome 

 Bacterial colonization of the lower respiratory tract, although 
once controversial, is now known to influence the pathogenesis 
of COPD. 93,94  The controversy was due to the classical view, 
borne largely from culture-based studies, of healthy lungs as 
a sterile environment. 95,96  Advances in culture-independent 
techniques for microbial analysis have shown that the healthy 
lung is host to its own microbiome, which changes significantly 
during disease. 97,98  Nevertheless, the precise role of the lung 
microbiome in COPD pathogenesis and the mechanisms that 
underpin infection-induced COPD exacerbations are poorly 
understood. 94  

 It is also known that changes in the intestinal microbiome are 
associated with IBD; 30,99,100  however, again, the nature of the 

shift in commensal populations is not well established. Indeed, 
it is certain that the microbiome contributes to both the initial 
inflammation and the chronic nature of IBD, but it is unclear 
whether commensals are the initiating factor. 101  Regardless of 
the role in the initiation of IBD, chronic inflammation contrib-
utes to a loss of diversity in the microbiome, which seems to 
perpetuate the disease. 99,101,102  In both COPD and IBD, the 
microbiomes of the lung and intestine have changes in the domi-
nant species and a reduction in diversity, 103  without decreases in 
microbial numbers. 104  Whether these changes are a mechanism 
or consequence of inflammation is not understood, but clearly 
a healthy microbiome is important to both respiratory and 
gastrointestinal health.   

 Epithelial barrier dysfunction 

 Maintenance of epithelial barrier function is critical for main-
taining the healthy state of the respiratory and gastrointestinal 
mucosa. This is because the epithelial barrier separates the inter-
stitium and the underlying tissues from the milieu of antigenic 
material in the mucosal lumen. Consequently, loss-of-barrier 
function as a result of mucosal inflammation contributes to 
the chronic nature of these conditions, although it is not yet 
understood whether loss of function is a causative factor or a 
consequence of disease. COPD patients are particularly sus-
ceptible to bronchitis (inflammation of the bronchial mucosa), 
which develops as smoke exposure damages the airway epithelial 
barrier. Shaykhiev  et al.  105  have shown that smoking leads to 
downregulation of genes coding for tight junction and adher-
ence proteins, which was more pronounced in smokers with 
COPD.  In vitro  studies examining the effect of cigarette smoke 
extract on primary bronchial epithelial cells have shown that 
the endogenous protease calpain, mediates degradation of tight 
junction complexes. 106  Thus, smoking, the major environmental 
risk factor for COPD, promotes dysregulation of the pulmonary 
epithelial barrier. 

 Epithelial barrier dysfunction is a common feature of IBD. 107  
However, although this is well established, like COPD, it is 
unknown whether barrier dysfunction is a causative or a con-
sequential factor. 108,109  Certainly, in IBD, increased epithelial 
permeability promotes the progression of chronic inflamma-
tion. Soderholm  et al.  110  demonstrated that the epithelial tight 
junctions of non-inflamed intestinal tissues from CD patients 
were more susceptible to breakdown upon luminal antigenic 
stimulation. Epithelial breakdown allows the establishment of 
invasive bacterial infections, which are more characteristic of 
CD than UC. 111  However, both UC and CD patients have high 
IgG titers against intestinal microbes, 112  and both diseases show 
histopathological evidence for the loss of tight-junctional integ-
rity, 113 – 115  suggesting that epithelial dysfunction is important in 
both conditions.   

 Pattern recognition receptors 

 Pattern recognition receptors are a family of highly conserved 
proteins that are expressed by cells of the innate immune sys-
tem. They recognize components termed  “ pattern-associated 
molecular patterns ”  of microorganisms, cellular stress signals, 
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and damaged tissues. They may be membrane bound or cyto-
plasmic and, when activated, induce production and secretion 
of inflammatory mediators and signaling molecules. Two pat-
tern recognition receptors families known to be important in 
the mucosal inflammatory response are the cytoplasmic NOD 
family of receptors and the membrane-bound Toll-like receptor 
(TLR) family. 116 – 118  

 COPD patients are known to be at an increased risk of pul-
monary infection, leading to inflammatory exacerbations 
of their disease; however, the mechanisms that underlie this 
increased risk are not well understood. 119  Kinose  et al.  87  have 
recently identified increases in the prevalence of the  NOD2  
rs1077861 single-nucleotide polymorphism (SNP) in COPD 
patients. NOD2 recognizes muramyl dipeptide, an element of 
peptidoglycan, which is an important component of the cell 
wall of virtually all bacteria. This SNP causes a conformational 
change in NOD2 and leads to a series of downstream inter-
actions that culminate in nuclear factor- � B activation and an 
enhanced inflammatory cytokine response upon stimulation. 
Although baseline  NOD2  expression was unaltered in COPD 
patients, the SNP was associated with increased COPD disease 
severity measured by reduced lung function. 87  The mechanism 
for the involvement of the SNP in COPD pathology has yet to 
be fully characterized. 

 NOD2 is also strongly associated with CD, whereby a 
defect in NOD2 signaling leads to impaired epithelial barrier 
function, increased IL-1 � , and an overcompensating TLR2 
response, and promotes increases in serum IL-12. 79,117   NOD2  
mutations are present in 15 %  of the CD population, and a 
 NOD2  SNP has recently been associated with smoking and 
CD. 120  Although Kinose  et al.  did not examine TLR2 or IL-12 
in the COPD study, IL-12 has been shown to be associated 
with increased CD8 cytotoxic T-cell and natural killer (NK) 
cell activation in COPD patients and mouse models, 121,122  
although whether this is related to  NOD2  polymorphisms, 
requires further investigation. NOD2 may therefore be a com-
mon link between COPD and CD, with polymorphisms identi-
fied in COPD and CD populations, including an association 
with smoking and CD. 

 TLRs that recognize viral and bacterial proteins maintain 
mucosal homeostasis, and genetic variants of TLRs have been 
identified in COPD and IBD. 118,123 – 126  Certainly, infection 
has a prominent role in COPD pathogenesis, and TLR2, 
which recognizes a range of bacterial and yeast proteins, 
has reduced expression and responsiveness to lipopolysac-
charide (LPS) in alveolar macrophages from COPD patients 
and smokers. 127  This suggests that there is a defect in the 
mucosal innate response in COPD. Conversely, TLR2 was 
shown to be upregulated in peripheral blood monocytes 
from COPD patients compared with healthy controls, 124  
perhaps indicating the presence of systemic inflammation 
in these patients. Although certain TLR2 polymorphisms 
are linked to increased infection, they do not seem to be 
associated with COPD. 128  Thus, the exact nature and defects 
of TLR2 responses in COPD remain unclear. TLR4, which 
recognizes LPS, promotes COPD pathogenesis, although 

the pathways involved seem to be complex. 126  Investigation 
of murine models indicates that TLR4 is involved in the deve-
lopment of smoke-induced inflammatory responses. 129  This 
inflammatory response was driven by IL-1 �  secretion from 
macrophages and neutrophil recruitment to lung tissue. 
Smoke exposure also drives TLR4-dependent IL-8 produc-
tion in monocyte-derived macrophages. 130  In both of these 
studies, smoke-induced TLR4 activation was independent 
of LPS. 

 Both TLR2 and TLR4 were found to be induced in the 
colonic mucosa of pediatric IBD patients. 131  Furthermore, 
Canto  et al.  132  identified an increase in TLR2 expression on 
peripheral blood monocytes, which was associated with elevated 
circulating tumor necrosis factor- �  (TNF- � ) concentrations in 
active UC and CD. This suggests that, like COPD, systemic 
inflammation may be involved is IBD pathogenesis. The D299G 
and T399I SNPs of TLR4 have been shown to be associated 
with both UC and CD, 133 – 135  whereas T399I has also been 
identified in COPD patients, 136  suggesting a possible com-
mon link. Although the functional consequences of these gene 
variants are not yet fully appreciated, it is known that inflam-
matory cytokine signaling results in increased TLR4 expres-
sion on macrophages from the intestinal epithelium and lamina 
propria in both UC and CD resulting in increased respon-
siveness to LPS. 137,138  Thus, TLR4 may have a common role in 
mucosal inflammatory disease, whereby an inflammatory insult 
coupled with TLR4 gene variations results in hypersensitivity 
to LPS and an exaggerated immune response in the lung or 
intestine.    

 POTENTIAL MECHANISMS OF ORGAN CROSS-TALK 

 Despite the similarities in the physiology of the respiratory 
and gastrointestinal mucosal organs, the common risk fac-
tors involved in the development of COPD and IBD and the 
incidences of inflammatory cross-talk between the two organs 
in disease, no mechanism has been identified for pulmo-
nary-intestinal organ cross-talk. Although the respiratory and 
gastrointestinal tracts both share components of the common 
mucosal immune system, the pathways involved in cross-
talk may be multifactorial, like COPD and IBD themselves 
( Figure 1 ).  

 Protease regulation in COPD and IBD 

 There is evidence that dysregulation of protease activity may 
have a role in both COPD and IBD. Increased levels of the pro-
teases that break down connective tissue components have been 
identified in COPD patients and modeled in animals. 139  Of par-
ticular interest is the matrix metalloproteinase (MMP) family of 
proteases, which has a role in the digestion of collagen, elastin, 
fibronectin, and gelatin, key components in mucosal structural 
integrity. 140  Increased levels of epithelial and leukocyte MMP-2, 
MMP-9, and MMP-12 have been associated with the pathogen-
esis of COPD 139,141,142  and IBD, 143 – 146  which may contribute to 
a  “ runaway remodeling ”  process. 

 The role of A1AT in COPD is established; however, the preva-
lence of A1AT in IBD is debatable. A1AT neutralizes proteases 
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involved in tissue remodeling, such as neutrophil elastase 147  
and MMP-12. 148  Deficiencies in A1AT production promotes 
extensive tissue damage during mucosal inflammation as the 
tissue remodeling process progresses unchecked. Deficiency of 
A1AT leads to the development of emphysema and COPD. 149,150  
Owing to its role in the remodeling of inflamed tissue, fecal 
A1AT levels are commonly used as a marker for disease severity 
in CD patients. 151,152  This suggests that that lack of A1AT does 
not promote the development of CD. Although some studies 
have suggested higher levels of A1AT in UC patients, 153,154  there 
is a higher prevalence of the allele linked to A1AT deficiency 
(PiZ) among the UC population, 153  and UC patients with this 
allele develop more severe forms of colitis. 154  Further work is 
required to address this divergence.   

 Immune cell homing and systemic factors 

 Both COPD and IBD are considered to be systemic inflamma-
tory diseases and peripheral lymphocyte activity may contribute 
to pathogenesis. 36,155 – 158  During inflammation, the bronchus-
associated lymphoid tissue regulates lymphocyte trafficking 
from the lung tissue through the general circulation. 18  This 
mirrors the role of the gut-associated lymphoid tissue and both 
lung and intestinal lymphocytes migrate to other mucosal sites 
as part of the common mucosal immune system. 159  It is possible 
that this trafficking, although functioning primarily as a com-
mon host mucosal defense, may be responsible for extra-organ 
inflammation associated with COPD and IBD. 

 In the healthy state, lymphocytes continuously migrate 
through the circulatory system, entering and exiting the tis-
sue in response to antigen exposure. To control trafficking of 
lymphocytes through tissues, these cells express unique homing 
receptors, which are specific for corresponding ligands on their 
target tissues. Thus, through a combination of homing mole-
cules and specific receptor – ligand interactions, lymphocytes will 
return to their tissue of origin during an immune response. 160,161  
The subtype and phenotype of circulating lymphocytes in COPD 
patients have not been well characterized. 155  However, there is 
evidence of abnormal function in peripheral lymphocytes that 
may contribute to extrapulmonary disease in COPD patients. 
Sauleda  et al.  162  showed increased cytochrome oxidase (CytOx) 
activity in the circulating lymphocytes of COPD patients, which 
correlated with increased CytOx detected in wasting skeletal 
muscle that is commonly associated with COPD. Interestingly, 
this increased oxidative response in circulating lymphocytes 
is also observed in other chronic inflammatory diseases, such 
as asthma and rheumatoid arthritis, but whether these same 
responses occur in IBD is unknown. 

 For IBD patients, the selectivity of lymphocyte – endothelial 
interaction is lost. Salmi  et al.  163  showed that in IBD patients, 
the expression of homing receptors in intestinal lymphocytes 
did not confer tissue specificity. These altered homing properties 
may contribute to the extraintestinal manifestations of IBD. It 
is known that gut-derived lymphocytes possess the capacity to 
bind to synovial 164  and hepatic 165  tissue, possibly accounting 

   Figure 1             Possible mechanisms of respiratory – gastrointestinal cross-talk include overproduction of proteases during excessive inflammation, 

changes in immune cell function, including increases in cytochrome oxidase (CytOx) expressing lymphocytes and gut-originating T-cell mis-homing. 

Cigarette smoke exposure may have a role in organ cross-talk by affecting these processes, and / or by causing mis-homing of dendritic cells (DCs) and 

epithelial cell apoptosis in respiratory or gastrointestinal tissues. Smoke exposure may also lead to changes in the microbiome, promoting growth of 

enteric bacteria in the lung or altering the microbiome in the intestine that induces inflammatory responses. Inflammation may lead to the production 

of autoimmune antibodies against the ubiquitous mucosal protein elastin or autoimmune responses against antigens produced during smoke-induced 

oxidative DNA damage. Systemic IL-6, in conjunction with localized TGF- � , may drive cross-organ Th17-polarized inflammation. Systemic IL-13 may 

drive aberrant NKT and macrophage responses across organs. IL-6, interleukin-6; TGF- � , transforming growth factor- � .   
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for the manifestations of IBD observed in these organs. This 
mis-homing of lymphocytes is believed to contribute to ocular 
and dermatological extraintestinal manifestations of IBD. 161  
Whether this same phenomenon contributes to the lung patho-
logies observed in IBD is unknown. Increased lymphocyte 
populations have been observed in the bronchoalveolar lavage 
(BAL) of IBD patients, 166,167  and analysis of the sputum of IBD 
patients showed that 65 %  had an increased CD4 / CD8 T-cell 
ratio in the lung tissue. 168  Whether this represents a further 
example of lymphocyte mis-homing involved in the pulmonary 
manifestations of IBD has yet to be confirmed. 

 It is possible that inhalation of smoke affects gut lymphocyte 
homing and promotes an inappropriate immune response. 
Smoke exposure is known to affect T-cell trafficking through 
altered chemotactic chemokine levels. 169,170  Smoke inhalation 
also seems to affect the homing properties and maturation of 
myeloid dendritic cells (DCs), 171 – 174  which are key antigen-pre-
senting cells in mucosal immune responses. The result is a rapid 
accumulation of myeloid DCs in the airways of smokers, 171  
which may be a result of a reduced capacity of myeloid DCs 
to migrate to the lymph node. 171,172  A recent animal study has 
similarly shown that smoke inhalation results in the accumula-
tion of DCs in the intestinal Peyer ’ s patches of wild-type mice, 
although unlike the airways, this does not seem to be depend-
ent on changes in the expression of the DC-homing molecule 
CCR6. 175  The increase in DCs was accompanied by a similar 
accumulation of CD4    +     T cells and an apparent increase in 
apoptosis of the cells overlying the follicle-associated epithelial 
tissue of the intestine. 

 This loss in epithelial barrier may lead to increased anti-
gen presentation and promote an intestinal inflammatory 
response. A caveat to this study was the use of a whole body 
smoke exposure model, which may not induce the same physio-
logical consequence as inhaled smoke. Erosion of the epithe-
lial layer overlying the follicle-associated epithelial tissue has 
been observed in CD patient biopsies. 176  Although no data on 
smoking status of these patients exist, smoke-induced epithelial 
apoptosis is one possible mechanism for the development of 
these erosions. Thus, smoking may induce an overall increase 
in antigenic presentation in the intestines, which may contrib-
ute to IBD pathogenesis. 

 Circulating TNF- �  has been strongly implicated in comor-
bidities associated with COPD 51  and has a central role in the 
progression of CD. 177  Although anti-TNF therapies do not seem 
to provide therapeutic relief in COPD, 51  they have been rela-
tively successful for inducing remission in CD. 178 – 180  Whether 
this is due to the nature of the damage in COPD or the efficacy 
of TNF therapy requires further investigation. Studies in trans-
genic mouse models that overexpress TNF- � , the TNF � ARE 
mouse model, have shown the development of spontaneous 
Crohn ’ s-like ileitis and proximal colitis. 181  Although ocular and 
synovial involvement has been observed, there have been no 
reports of respiratory disease in this model. However, as with 
pulmonary manifestations of IBD, the airway involvement may 
be subclinical and histopathological and lung function studies 
may be required. 

 IL-6 has a role in the acute phase response to inflammation 
and has been implicated in the pathogenesis of both COPD 182,183  
and IBD. 184,185  IL-6 is systemically elevated in patients with 
emphysema and has been shown be associated with apoptosis 
in the pulmonary tissue. 182,183  Importantly, IL-6, in combina-
tion with transforming growth factor- � , is a major factor in the 
development of the Th17 subset of T-helper cells. 118,186  Th17 
cells are a distinct effector T-cell subset that secretes IL-17A, 
IL-17F, IL-21, IL-22, IL-26, and TNF- �  and promote neutrophil 
chemotaxis. 118,187 – 190  Recent work has identified increased 
peripheral Th17 cells in COPD patients. 186  

 IL-6 and Th17 cells are also associated with both CD and 
UC, 185,191  and high levels of IL-6 and Th17-associated cytokines 
have been identified in both the blood 185  and the inflamed and 
non-inflamed mucosa 191,192  of IBD patients. Moreover, block-
ade of the IL-6 pathway is therapeutic in animal models. The fact 
that IL-6 is elevated in the non-inflamed intestinal mucosa of 
IBD patients, without causing tissue damage, may suggest that 
a secondary tissue insult is required. As transforming growth 
factor- �  regulates mucosal tissue remodeling and is strongly 
associated with COPD and IBD, it is conceivable that increased 
systemic IL-6, coupled with transforming growth factor- �  pro-
duction at the mucosal surface (due to smoke damage in the 
lungs of an IBD patient or an intestinal infection in an COPD 
patients), may lead to the development of a Th17-polarized 
inflammatory response at a secondary organ. 

 IL-13 is likely to contribute to COPD progression 193  and muta-
tions in the IL-13 promoter may promote this pathogenesis. 194  
T-cell receptor-invariant NK cells or DCs, activated by bacterial 
or viral infection in the airways, secrete IL-13, which activates 
macrophages. 193,195 – 197  This in turn causes further IL-13 pro-
duction, which leads to STAT (signal-transducer and activator 
of transcription)6-dependent goblet cell hyperplasia, smooth 
muscle hyper-responsiveness, and airway remodeling. 188,198  

 IL-13 also has a role in the pathogenesis of UC, but does 
not seem to be involved in CD. 199  In UC, it appears to be the 
aberrant stimulation of the immune response by the micro-
biome, which results in direct invariant NK cell cytotoxic action 
on the epithelium and secretion of IL-13-driving epithelial 
barrier dysfunction and apoptosis, and enhancement of 
NKC toxicity. 199,200  Like COPD, STAT6 is an important media-
tor for the action of IL-13 on the epithelium, 201  and the STAT6 
pathway is a potential therapeutic target in both conditions. 
Whether these pathways act systemically in COPD and IBD 
is unknown, although serum IL-13 is increased in COPD, 194  
possibly driving aberrant NKT and macrophage responses 
across organs.   

 Interaction of the respiratory and intestinal microbiomes 

 COPD sufferers have an altered lung microbiome compared 
with healthy individuals, including  “ healthy ”  smokers. 103  This 
does not exclude the possibility that smoking influences the lung 
microbiome. Smoking has been shown to restrict the ability of 
alveolar macrophages to phagocytose and kill bacteria. 202  This 
suggests that smoking may lead to a defect in immunoregulation 
of the lung microbiome. There is evidence that components of 
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the enteric microflora, specifically Gram-negative bacilli, may 
also make up a component of the lung microflora. 203,204  These 
bacteria are resistant to cigarette smoke 205  and may contribute 
to severe exacerbations of COPD. 204  Furthermore, inappropri-
ate immune responses against intestinal microflora are widely 
accepted to be a critical factor in the ongoing inflammation 
associated with IBD. Thus, there exists the possibility that the 
immune response against commensal microflora observed in 
IBD patients, may not be restricted to the gastrointestinal tract, 
but may also be directed toward enteric bacteria present in the 
lung microflora. 

 There have been no definitive studies on the effect of smoking 
on the respiratory or intestinal microbiome. This is especially 
surprising given cigarette smoke is known to selectively inhibit 
bacterial growth, favoring a Gram-negative bacilli population. 205  
It is possible that smoke-induced changes to the intestinal 
microbiome may promote the increased risk of IBD observed 
in COPD sufferers. There is growing interest in how diet and 
nutrition may influence the human microbiome and interplay 
with the immune system and ultimately human health. 206,207  
Fecal bacteriotherapy, whereby the microflora of a healthy 
patient is transplanted to a colic patient, has shown promise 
in case studies, as a treatment for UC. 102,208,209  This suggests 
that the composition of the microbiome has an important role 
in the intestinal inflammation, and restoration of a  “ healthy 
microbiome ”  can promote remission of disease. Although ulti-
mately conjecture, it is conceivable that smoking may disrupt the 
 “ healthy microbiome ”  and therefore link, smoking and COPD 
to IBD. This could also account for the familial link of COPD 
and IBD observed by Ekbom  et al.  39  as there is a familial link to 
the make-up of an individuals microbiome and genetics have 
a role in microbiome development. 210,211    

 Autoimmunity 

 There is some evidence to suggest that COPD has an autoimmune 
element, which leads to disease progression and relapse. 212  Key to 
this concept are the observations that only some smokers develop 
COPD and that the clinical features of COPD continue to increase 
in severity even after the cessation of smoking. This suggests that 
ongoing immune responses occur against elements other than 
cigarette smoke. Smoke-induced emphysema has been shown 
to generate an autoimmune response against elastins. 140,213  In 
this proposed model, exposure to smoke antigens promotes an 
immune response that includes secretion of high levels of elastin 
proteases (elastases) from neutrophils and macrophages (e.g., 
neutrophil elastase, MMP-9, and MMP-12). 214  The elastases 
degrade and fragment elastin proteins, to which the adaptive 
immune system mounts a response. 140  As elastin is a ubiquitous 
protein in the mucosal tissue, an autoimmune response could 
lead to pathologies outside the lung, and may be a mechanism 
for intestinal pathologies associated with smoking. 

 Tzortzaki and Siafakas 215  proposed that smoke-induced oxi-
dative epithelial damage initiates the disease process in COPD 
through the initiation of autoimmune responses. In their pro-
posed model, oxidative DNA damage to epithelial cells leads to 
phenotypic changes and recognition of these cells as  “ non-self  ”  

by pulmonary DCs. This results in a loss-of-barrier function as a 
T-cell response is initiated against the epithelium. Such autoim-
mune responses may affect the intestinal epithelium, or may be 
driven by smoke exposure at the intestinal mucosa. 

 It is generally accepted that CD is a disease with an auto-
immune component. The prevailing hypothesis for the deve-
lopment of CD is that an initial infection or insult leads to an 
inappropriate immune response against the intestinal mucosa 
and / or commensal bacterial population. 30,56  This leads to the 
recurring cycles of chronic inflammation that characterize CD. 
UC also has a clear autoimmune element, although different 
to that of CD. 216,217  Recent work has found that isoforms of 
human tropomyosin (hTM 1 – 5) are capable of inducing auto-
antibodies and T-cell responses in UC. 218  Autoimmunity would 
also explain some elements of organ cross-talk in inflamma-
tory disease. Immune responses against bacteria or conserved 
mucosal protein epitopes of the pulmonary and gastrointestinal 
tracts may explain cross-organ inflammation in COPD and IBD. 
Expression of hTM on extraintestinal organs may account for 
cross-organ inflammatory associations in UC, although hTM5, 
the trypomyosin with the strongest link to UC, has not been 
identified in the lung tissue. 218     

 SUMMARY 

 Both COPD and IBD are driven by inflammatory processes, 
are systemic diseases, and are epidemiologically linked. Given 
the consistent indications of the limited research to date, it is 
clear that comprehensive studies on the prevalence of intes-
tinal involvement in COPD and pulmonary disease among 
IBD patients are required. The mechanisms that underpin the 
development of extra-organ inflammation in COPD and IBD 
patients are confounded by the complicated etiologies of these 
conditions. Both conditions share environmental triggers and 
have similar immune and physiological involvement. However, 
the diversity of the mechanisms that may be involved in the 
development of each condition suggests that cross-talk in these 
diseases may be a multi-faceted process involving multiple path-
ways ( Figure 1 ). Our understanding of this area is largely based 
on epidemiological and clinical observations and there is a need 
for basic research to elucidate the associations and mechanisms 
involved. A better understanding of the nature of organ cross-
talk in COPD and IBD will contribute to the elucidation of 
the etiologies of these conditions and may identify therapeutic 
strategies for mucosal inflammatory disease.     
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