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Abstract
Mucosal healing (MH) is vital in maintaining homeostasis within the gut and 
protecting against injury and infections. Multiple factors and signaling pathways 
contribute in a dynamic and coordinated manner to maintain intestinal home-
ostasis and mucosal regeneration/repair. However, when intestinal homeostasis 
becomes chronically disturbed and an inflammatory immune response is 
constitutively active due to impairment of the intestinal epithelial barrier auto-
immune disease results, particularly inflammatory bowel disease (IBD). Many 
proteins and signaling pathways become dysregulated or impaired during these 
pathological conditions, with the mechanisms of regulation just beginning to be 
understood. Consequently, there remains a relative lack of broadly effective thera-
peutics that can restore MH due to the complexity of both the disease and healing 
processes, so tissue damage in the gastrointestinal tract of patients, even those in 
clinical remission, persists. With increased understanding of the molecular mecha-
nisms of IBD and MH, tissue damage from autoimmune disease may in the future 
be ameliorated by developing therapeutics that enhance the body’s own healing 
response. In this review, we introduce the concept of mucosal healing and its re-
levance in IBD as well as discuss the mechanisms of IBD and potential strategies 
for altering these processes and inducing MH.
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Core Tip: Mucosal healing (MH) is vital in maintaining intestinal homeostasis and protecting against 
infection and injury. MH has emerged as an important clinical criterion in effective treatment of inflam-
matory bowel disease (IBD). However, there remains a relative lack of therapeutics that can restore MH 
due to the complexity of the disease and healing processes. Through increased understanding of the 
molecular mechanisms of MH, tissue damage from IBD may be ameliorated by developing novel 
therapeutics. Here, we introduce the concept of MH and its relevance in IBD, and discuss the mechanisms 
of IBD and potential strategies for altering these processes for inducing MH.
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INTRODUCTION
Mucosal healing (MH) is a process of wound repair that restores the integrity of damaged epithelial 
barrier and homeostatic function after an injury compromises barrier integrity[1]. It is a complex process 
regulated by multiple cell types, through distinct mechanisms in response to highly specific stimuli 
within multiple signaling and cytokine pathways[1]. For simplification, the MH process is considered to 
have three phases: Epithelial restitution, proliferation, and differentiation and maturation[1]. Restitution 
consists of epithelial cells migrating into a wound within hours, followed by proliferation of epithelial 
cells in hours to days, and finally differentiation of intestinal stem cells into all mature intestinal cell 
types[1-3]. Each phase is induced and regulated by multiple cytokines, growth factors, and cell types 
reviewed in[1] and can be influenced by many factors that enhance or prevent wound healing as well as 
by the source of barrier injury. When the homeostatic process of wound healing is slowed or delayed by 
external or genetic factors, chronic inflammation may develop because repair of the intestinal epithelial 
barrier (IEB) and subsequent reduction of inflammation will not occur unless wound healing 
mechanisms are present[3]. Due to inflammation and chronic immune response, the consequences of 
impaired MH are chronicity of autoimmune diseases, including Inflammatory Bowel Disease, (IBD) and 
its progression to colorectal cancer.

INFLAMMATORY BOWEL DISEASE OVERVIEW AND PATHOGENESIS
Inflammatory Bowel Disease (IBD) is a term that represents autoimmune inflammatory diseases of the 
gut, with ulcerative colitis (UC) and Crohn’s Disease (CD) being the major disease types; however, the 
etiology of IBD remains unclear. IBD is known to have genetic and environmental risk factors, but the 
mechanisms by which these factors induce IBD are not well-understood[4]. Common symptoms include 
abdominal pain, diarrhea, weight loss, malnutrition, and particularly in CD, nausea, vomiting, intestinal 
blockages, fistulae, and abscesses[4,5]. IBD is an increasingly common and often debilitating disease, 
affecting up to 200 individuals per 100000 people in the United States[4]. Onset of IBD often occurs 
before the age of 30, and patients experience poor quality of life along with high risk of developing 
colorectal cancer due to the chronic and progressive symptoms and persistent inflammatory state[1,4]. 
Though multiple treatment mechanisms exist, including corticosteroids, anti-inflammatory medications, 
monoclonal antibodies, stem cell treatments, and surgery, IBD cannot currently be cured[4]. Therefore, 
continued research into the mechanisms of pathogenesis and development of new pharmaceuticals and 
treatment methods is vital to decrease mortality and improve quality of life for IBD patients.

Autoimmune disease pathogenesis is difficult to study due to the multifactorial causes of disease and 
complex molecular mechanisms, as well as the predicament of patients not presenting to the clinic until 
late in the disease development process. Although the disease complexity and difficulty in identifying 
the initial molecular instigators has thus far precluded full understanding of the specific molecular 
mechanisms of IBD pathogenesis, the general overarching processes have been elucidated. During IBD 
pathogenesis, the IEB and mucosal layers become damaged and inflamed due to injury and/or 
infection, which can develop into a state of chronic inflammation and reduced IEB integrity. Genetic 
factors can also play a role in pathogenesis, particularly in CD through genes such as a variant that 
impairs autophagy and dysregulates the IEB and gut microbiota[6,7]. The damage to the IEB results in 
microbial and antigen exposure in the intestinal lumen, leading to an inflammatory cascade and 
disturbed homeostasis[8,9]. Multiple cytokines and immune cell types are also thought to contribute to 
the pathogenesis of or protection against IBD; therefore, further study of the complex interactions 
governing the maintenance or breakdown of gut barrier homeostasis is imperative to deeper 
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understanding of IBD pathogenesis and the development of effective treatments.

MUCOSAL HEALING AND PATHOLOGICAL RELEVANCE IN IBD
The main goals of IBD treatment are two-pronged: Reducing symptoms and preventing new inflam-
mation and intestinal injury through traditional treatment methods, and recently a new, ambitious goal 
of inducing wound healing of existing inflammation and damage[8]. Some current treatments may 
contribute to both treatment goals; however, many existing clinical treatments are more targeted toward 
the traditional goal of preventing inflammation and damage. Even with the advent of some newer MH-
focused treatments, additional avenues of further enhancing MH should be explored. Although clinical 
remission or preventing new inflammation is possible, patients may still have residual disease 
symptoms during remission due to the defective wound healing process leaving previous intestinal 
damage unrepaired. Additionally, up to half of IBD patients experience non-response or loss of 
response to standard therapeutics, leading to relapse[10]. Hence, MH induction presents an attractive 
goal in effective long-term treatment of IBD and prevention of relapse, and thus also prevention of 
progression to colitis-associated colon cancer. In this review, we will summarize the main current and 
prospective treatments of IBD, as described in Table 1, and their benefits and limitations towards the 
goal of reducing inflammation and achieving MH. More detailed analysis of the mechanisms of action, 
safety, and efficacy profiles of current IBD therapies and clinical trials can be found in Neurath et al[11]. 
However, in this review, we will emphasize areas that have not yet been as extensively clinically 
explored, including the temporal control of gut immune function, which presents novel potential for 
fine-tuning of the immune system in MH and restoration of gut homeostasis. We will examine three 
major factors contributing to the pathogenesis and tissue damage of IBD, as shown in Figure 1: Gut 
barrier dysfunction, gut dysbiosis, and inflammatory cytokine responses. Specifically, we will focus on 
the prospect of altering these factors and associated pathways summarized in Table 2 for both the 
reduction of inflammation and induction of MH.

CURRENT STATUS OF IBD THERAPIES AND FOCUS ON ENHANCED MUCOSAL 
HEALING
Traditional Therapies
Historically, there has been a disconnect between the expectation of IBD treatment promoting MH and 
real treatment outcomes, as many therapies for UC and CD primarily target symptom relief and 
reduction of chronic inflammation[12]. Corticosteroids, Methotrexate, and surgery are typically utilized 
to achieve these goals, but they do not promote MH as the primary therapeutic endpoint[13,14]. Because 
UC and CD are progressive diseases, patients may still experience intestinal damage even during 
periods without physical symptoms, and disease progression is typically only slowed by these 
treatments, not stopped[12,15]. However, achieving MH may help stop disease progression as well as 
decrease symptom severity. New treatment plans broaden the therapeutic focus to include inducing 
MH through a variety of mechanisms, such as by altering the gut microbiome and altering inflam-
matory and anti-inflammatory cytokines with antibodies or exogenous cytokine therapies.

Inflammation Reduction and Immune Modulation Therapies
One such mechanism for emphasizing MH includes suppressing specific parts of the patient’s immune 
system to decrease the main contributors of chronic inflammation. When new inflammation is reduced, 
it may then be possible for the wound healing process to begin to keep up with the rate of tissue 
damage. Methods of achieving this goal include enteral nutrition (EN), partial EN (PEN), 5-aminosali-
cylates (5-ASA), and Azathioprine treatments, which focus on decreasing IBD-associated inflammation 
by suppressing the host immune system in a less global manner than corticosteroids or preventing the 
production of inflammatory molecules. EN is a dietary treatment for IBD patients that can either totally 
(with EN) or partially (with PEN) replace solid food intake with specialized formula[16]. Although the 
mechanism by which EN induces MH is currently unknown, microbiome changes are implicated and 
are hypothesized to aid in decreasing chronic inflammation[17]. While typically a pediatric treatment, a 
pilot study shows MH in adults following EN and PEN treatment as well[16]. Currently, the largest 
drawback of EN treatment is low patient compliance, especially in adults[16]. 5-ASA drugs, which are 
used to induce remission in early IBD, are shown to induce MH in 43.7% of patients[18]. Azathioprine is 
a purine analog inhibiting purine metabolism and blocking T cell activation and co-stimulation, 
therefore functioning by suppressing the immune system and decreasing inflammation in IBD[11,19-
21]. It is shown to achieve MH independently in some cases (30.1%) alone but is more successful when 
used in conjunction with anti-TNF-α antibodies such as Infliximab (44%)[22]. Other immunomodulating 
drugs shown to induce MH when given with monoclonal antibodies include Cylosporine and 
Tacrolimus[23].
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Table 1 Summary of inflammatory bowel disease therapeutics

Treatment type Available therapeutics Mucosal healing relevance/ Success

Corticosteroids Prednisone/ Prednisolone/ 
Methylprednisone

Prednisone treatment for 14 d (20 mg/day) decreased mucosal inflammation indicating a 
possible role in developing short-term MH[139]. 29% of patients in one study displayed 
endoscopic remission after steroid treatment[140].

Nutritional therapy Enteral nutrition (EN)/ Partial 
enternal nutrition (PEN)

EN/PEN induce MH in both adults and children[14].

Aminosalicylates (5-ASA) Sulfasalazine/ Mesalamine/ 
Olsalazine/ Balsalazide

On average induce MH in 43.7% of patients[141].

Azathioprine/ 6-
mercaptopurine

Azathioprine alone has achieved MH in 16.5% of cases and in 43.9% when used in 
combination with antibody therapies[18]. After 16 wk of mercaptopurine treatment, 
patients in remission showed a 47.1% rate of MH[142]. 

Cyclosporine Shown to induce MH when used in conjunction with Vendolizumab[143].

Tacrolimus Shown to induce MH when used in conjunction with Vendolizumab[143].

Immunomodulators

Methotrexate After 36 wk, methotrexate treatment had a MH rate of 47.4%[142].

Adalimumab Induced MH in 24% of patients treated[24].

Certolizumab Clinical response rate at weeks 2 and 12 was 29.7% and 52.8% (respectively) in CD[25].

Infliximab Treatment induced MH in up to 60.3% of patients in phase 2 clinical trials[23].

Natalizumab MH achieved by 42.3% of patients after 14.1 mo of treatment[144].

Risankizumab-rzaa Endoscopic response and deep remission observed in 55% and 29% of patients 
(respectively), indicating MH[27].

Ustekinumab Treatment of individuals with moderate to severe CD showed MH via a reduced disease 
score after 8 wk[19].

Monoclonal antibody/ 
Biologic therapies

Vedolizumab Has shown to induce MH in up to 50% of UC patients and 29% of CD patients in clinical 
trials[26,27].

MH: Mucosal healing; EN: Enteral nutrition; PEN: Partial enteral nutrition; 5-ASA: Aminosalicylates; CD: Chron’s Disease; UC: Ulcerative colitis.

Monoclonal Antibody Therapies
Monoclonal antibodies targeting inflammatory cytokines are an emerging class of IBD therapies that 
more directly focus on permitting or inducing MH and are an attractive method of IBD treatment. 
Monoclonal antibody drugs targeting multiple cytokines are approved or in trials, and function by 
removing inflammatory cytokines. Anti-tumor necrosis factor-alpha (TNF-α) antibody-based drugs such 
as Infliximab, Adalimumab, and Certolizumab are biologic therapies that have achieved significant 
clinical success and are now widely used as front-line treatments for IBD, with the goal of reducing 
inflammation and promoting MH. The target of anti-TNF-α therapies is a pro-inflammatory cytokine 
contributing to the chronic and severe inflammatory response observed in UC and CD, and the 
monoclonal antibody functions by downregulating pro-inflammatory molecules and restoring IEB 
integrity, allowing the body to begin to heal[8,24-26]. Infliximab is an Immunoglobulin G1 anti-TNF-α 
antibody that is shown to induce MH. Active phase 1 and 2 clinical trials of Infliximab in UC patients 
find that, respectively, 45.5% of patients and 60.3% of patients exhibit MH[27]. Adalimumab is another 
anti-TNF-α antibody presenting some indication of MH effects. In the double blind, randomized, 
placebo controlled clinical trial, 24% of patients display MH at week 52 compared to 0% in the placebo 
group[28]. Certolizumab pegol is an anti-TNF-α antibody fragment targeting soluble and trans-
membrane TNF. Its role in promoting MH is not yet well-investigated, but it demonstrates symptom 
relief and remission at week 8[29]. In some patients, anti-TNF-α treatments are ineffective or lose 
efficacy over time. In these patients, biologics targeting other inflammatory cytokines are employed as 
IBD treatment options. For example, Ustekinumab is a monoclonal antibody that targets interleukin 
(IL)-12 and IL-23 pro-inflammatory cytokines. Ustekinumab significantly reduces SES-CD (Simplified 
Endoscopic Activity Score for Crohn's Disease) scores in patients over 44 wk, implying its ability to 
enhance MH[30]. Similarly, Risankizumab, an IL-23 antibody, induced remission in 45% of patients, 
with an endoscopic response rate of 29%[31]. Additionally, Natalizumab, an anti-α4-integrin antibody, 
induces MH in 42.3% of patients[32]. Vedolizumab, on the other hand, is an α4β7 integrin receptor 
antagonist and biologic medication, with potential immunosuppressive effects localized to the colon. In 
a clinical trial, 50% of UC patients and 29% of CD patients display MH following long-term use[33,34].

Although inflammation reduction and monoclonal antibody treatments have greatly enhanced the 
quality of IBD treatment in recent years, lack or loss of response occurs with concerning frequency, and 
even in patients who respond well to treatments, complete resolution of the disease has not been 
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Table 2 Summary of molecular pathways involved in mucosal healing

Pathways/ Mechanism of action Associated models studied Ref.

EGFR signaling In vitro, colorectal cancer  mice, EGFR mutant mice [43,116]

Hippo/YAP signaling In vitro, YAP-1 transgenic mice [36,59]

Notch signaling Villin-Claudin-1 transgenic mice [41,42]

Wnt/β-catenin signaling In vitro and In vivo models of injury/repair [44,60,61]

Vitamin D receptor (VDR) signaling In vitro, VDR knockout mice [45]

Src/focal adhesion kinase In vitro, Mechanical colonic wound in mice, Nox1 and AnxA1 knockout 
mice, oral gavage in mice

[76-78]

Autophagy/ATG16L1 Patient biopsies; ATG16L1 T300A knock-in mice; Atg5-manipulated mice [6,7,104] 

SCFA-mediated signaling [acetate, propionate, 
butyrate, etc.]

In vitro, Patient biopsies, oral gavage in mice. T-cell induced colitis, 
trinitrobenzenesulphonic acid (TNBS) colitis

[83-85,91,93,100,101,114]

TLR-mediated signaling DSS colitis [109,110,112]

MyD88 mediated bacterial sensing Mechanical colonic wound, MyD88 knockout mice [111]

Prostaglandin-endoperoxidase synthase 2 
enzyme (PGE2)

In vitro, mechanical colonic wound, Ptgs2 knockout mice, Ptger4 knockout 
mice

[111,112]

Mucin 2 signaling In vitro, DSS colitis, EGFR mutant mice [80,116]

IL-6/IL-22/IL-23/STAT3 signaling DSS colitis, Th2-mediated colitis, cytokine deficient mice, bone marrow 
transplant mice, T-cell induced colitis, human and mouse intestinal 
organoid culture

[94,97,98,136-138]

TGF-β signaling In vitro, DSS colitis, TGF-β transgenic mice [50,130,131]

IL-10 signaling In vitro, mechanical colonic wound in mice, IL-10-deficient mice [132,133]

EGFR: Epidermal growth factor receptor; YAP: Yes-associated protein 1; ATG16L1: Autophagy related 16 like 1 protein; Atg5: Autophagy related 5; SCFA: 
Short chain fatty acid; TNBS: Trinitrobenzenesulphonic acid; TLR: Toll-like receptor; DSS: Dextran sodium sulfate; PGE2: Prostaglandin-endoperoxidase 
synthase 2 enzyme; IL: Interleukin; STAT3: Signal transducer and activator of transcription 3; TGF-β: Transforming growth factor-β.

achieved10]. This is due to the complex nature of disease development through many aberrant proteins 
and signaling pathways, as well as the multi-faceted process of MH that must be approached from 
many angles to restore complete IEB homeostasis. Overall, while current therapies offer evidence of 
permitting MH in IBD, some of these therapies do not directly promote MH through enhancing the 
processes of restitution, proliferation, or differentiation, but rather by simply inducing immune 
suppression to decrease inflammation and associated injury. Subsequently, there is a critical need to 
better understand the processes of inflammation and MH in IBD to aid in the development of actively 
MH-inducing IBD therapies.

IBD TISSUE DAMAGE MECHANISMS AND IMPLICATIONS FOR MH INDUCTION
Gut Barrier Functions and Mucosal Healing
A major role of the intestinal epithelium is its function as a barrier against the luminal environment and 
antigens; a role that is critical in maintaining normal mammalian homeostasis[35]. Accordingly, IEB 
dysregulation is a major factor in gut inflammation; thus, reinforcement of IEB integrity is a key consid-
eration when developing more effective treatments for gut inflammatory diseases, including IBD. The 
MH process has been shown to help reinforce barrier integrity[36]. A complex and dynamic 
coordination between epithelial and immune factors facilitates MH, however, the ‘paradoxical’ role of 
the barrier-integral proteins in promoting MH remains ill-understood. Here, we summarize the key 
components of IEB regulation to illustrate the dynamic causal relationship between MH and the 
proteins comprising the structural and functional units of the gut barrier.

The physical component of the IEB consists of a single layer of epithelium, with cells linked by 
junctional complexes along the apicobasal axis. Excellent reviews have described the types and roles of 
junctional complex proteins in barrier integrity, thus here we focus on mechanisms by which regulation 
of these proteins influences inflammation and MH[35-39]. Tight junctions, the most apical cell-cell 
adhesions are considered the “gate” of the IEB and consist of multiple proteins, including the Claudin 
family of proteins, Occludin, junctional adhesion molecule (JAM) and the zonula occludens (ZO)-
proteins[40]. Studies in cell and mouse models demonstrate through genetic manipulation that tight 
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Figure 1 Pictorial depiction of inter-connection between the immune system, inflammation, and microbiota in mucosal inflammation, 
associated injury, and healing. Left: normal mucosal homeostasis; Middle: Inflammatory lesions damage the mucosal barrier between the gut lumen and the 
rest of the body. Barrier damage leads to immune cell activation, cytokine release, and feedback cycles of deteriorating inflammation driven by microbes crossing the 
damaged barrier; Right: Migration of circulating restitutive immune cells to the wound area, the release of repairing cytokines; crosstalk among extracellular matrix 
and epithelial cells for proliferation and migration; switching of microbiota and cytokines for mucosal healing and functional crypt regeneration.

junction proteins are not merely static structural entities of the IEB; they perform additional non-
canonical roles of regulating epithelial cell proliferation, survival, differentiation, and migration, which 
are the same processes integral to MH. In this regard, ZO-1 regulates expression and nuclear 
localization of the transcription factor ZO-1-associated nucleic-acid-binding protein to influence cell 
proliferation in a density dependent manner[41,42]. Recent studies also show that the ZO-proteins 
modulate Hippo/Yes-associated protein 1 signaling, a critical regulator of crypt growth and MH[43]. A 
similar role of JAM in regulating intestinal epithelial cell (IEC) proliferation has been reported[44,45]. 
Occludin, on the other hand, is shown to regulate IEC apoptosis and survival[46,47]. Recent studies 
demonstrate that the Claudin family of proteins is integral to tight junction structure and function and 
plays a complex role in gut inflammation and regenerative processes. For example, Claudin-1 overex-
pression in the intestinal epithelium of mouse models of IBD induces significant dysregulation of 
Notch/Wnt signaling and severe colitis, resulting in delayed recovery from colitis-associated injury[48,
49]. Claudin-2 is unique among the Claudin proteins expressed in the intestine, as it is primarily 
expressed at the crypt base among proliferative undifferentiated cells and associates inversely with the 
differentiation state of IECs[48]. Of note, Claudin-2 is a direct target of Epidermal Growth Factor 
Receptor (EGFR), Wnt/β-catenin, and Vitamin D receptor signaling, all of which promote intestinal MH
[50-52]. Claudin-3 on the other hand, which functions as a receptor for Clostridium perfringens, is sharply 
downregulated in the biopsies of the IBD patients, and loss of its function in the mouse gut promotes 
colitis-associated cancer[53-55]. We have also previously reported that Claudin-3 Loss enhances gp130/
IL-6/STAT3 (signal transducer and activator of transcription 3) signaling, which promotes colitis-
associated injury/repair[50]. Interestingly, the loss of intestinal Claudin-7 expression results in 
spontaneous inflammation due to dysregulation of epithelial-extracellular matrix interactions[56,57]. 
Claudin-7 also regulates intestinal stem cell function in association with the Epithelial Cellular Adhesion 
Molecule protein[58,59]. Conversely, Claudin-15 Loss in the IEB results in a mega-intestine[60]. Hence, 
dysregulation of tight junction protein expression in the IEB results in IBD, indicating that restoration of 
tight junction homeostasis is a vital component of MH and a promising target for treatment 
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development.
Like tight junction component proteins, adherens junction proteins contribute significantly to gut 

inflammation and MH. Here, E-cadherin, a protein whose expression indicates an epithelial phenotype, 
contributes to inflammation-associated epithelial repair by regulating the epithelial-to-mesenchymal 
transition, a process associated with cell proliferation and migration[58,61,62]. Specifically, E-cadherin 
expression inhibits migration of IECs and wound healing[63]. Contrastingly, complete E-cadherin loss 
causes a severe inflammatory phenotype characterized by villus blunting, which is a marker of 
premature epithelial death, and incomplete brush border development[64]. The stabilization of E-
cadherin expression is facilitated partly by binding with the cytoplasmic domain of p120-cadherin. 
Accordingly, p120 knockout mice displayed disrupted intestinal integrity and early death from 
intestinal injury[65]. Other heterodimeric adherens junction proteins, α- and β-catenin, are key players in 
the regulation of Hippo and Wnt signaling[66,67]. Although α- and β-catenin expression dictates IEC 
proliferation and differentiation during injury repair, their expression counter-acts each other. 
Moreover, ubiquitination of β-catenin by α-catenin aids the degradation of β-catenin, balancing the Wnt 
signaling pathway[68]. Taken together, these findings support a complex and dynamic interdependence 
between gut barrier regulation and MH, which should be considered for therapeutic potential.

Gut Dysbiosis, IBD, and Mucosal Healing
Aberrant microbiome-immune interactions can lead to improper immune activation and are potentially 
responsible for the clinical and endoscopic observations in IBD patients. Mechanisms of microbial 
involvement in IBD include production of short-chain fatty acids (SCFAs), interaction with autophagy 
pathways, activation of immune cells, TLR signaling, and prostaglandin pathways[69-73]. Excellent 
reviews have covered the details of such interactions and the dynamic association with gut inflam-
matory processes[71-75]. Thus, here we focus primarily on how gut microbiota may contribute to MH 
processes under normal and/or inflammatory conditions.

Gut dysbiosis is mediated by pathogenic microbes harboring genes encoding toxin proteins, which 
disrupt the IEB via disassembly or redistribution of tight junction proteins. For example, human 
epithelial cells treated with Escherichia coli or Salmonella typhimurium demonstrate downregulation of 
ZO-1 and Occludin proteins while by contrast, Claudin-2 is upregulated[76-78]. Shigella flexneri and 
Campylobacter jejuni are involved in deregulating E-cadherin, as well as activating IL-8 and nuclear 
factor kappa-light-chain-enhancer of activated B cells (NF-κB), thereby inducing barrier dysfunction and 
inflammation[79,80]. Overall, studies suggest that pathogenic gut bacteria promote chronic mucosal 
inflammation by dysregulating IEB integrity.

On the other hand, commensal gut bacteria seem to promote the initial stage of epithelial restitution, 
as studies in germ-free mice show impaired rates of epithelial cell migration, which is dependent on the 
formation of focal adhesions[81,82]. In this context, a commensal bacterium activates the focal adhesion 
kinase, thereby enhancing epithelial restitution and promoting mucosal wound repair in a redox-
dependent manner[83-85]. In a mouse colonoscopy-based wound healing model, an abundance of 
anaerobic bacteria such as Akkermansia spp augmented early stages of MH[86]. The selection of mucin-
producing bacteria from the mucin layer also helps close mucosal wounds[87,88]. These microbes help 
generate SCFAs such as acetate, propionate, and butyrate, which are considered the primary energy 
sources of gut colonocytes and are therefore critical supporters of IEB restoration and integrity 
following tissue damage[89-92]. The major producers of SCFAs include the genus Bacteroides, 
Clostridium clusters IV and XIVa, and Bifidobacterium, though they use diverse mechanisms to achieve 
homeostatic outcomes[89,93,94]. For example, Bacteroides ovatus decreases lipopolysaccharide-induced 
inflammation and produces indole-3-acetic acid that likely promotes IL-22 production by immune cells, 
yielding beneficial effects in epithelial regeneration[95,96]. SCFAs produced by fiber-fermenting 
commensal microbes are also linked to upregulation of Foxp3+ T regulatory (Tregs) cell development, 
which have a widely documented role in protection against epithelial injury and colitis [97]. Inhibition 
of histone deacetylases and/or activation of the latent form of transforming growth factor-β (TGF-β) to 
act as a potent inducer of Tregs are potential mechanisms of SCFAs[98,99]. SCFAs also mediate 
activation of STAT3 which plays a vital role in mucosal homeostasis[100,101]. Clostridia-related 
segmented filamentous bacteria promote IL-23 production by antigen-presenting cells, which activate 
type 3 innate lymphoid cells (ILCs) to initiate an IL-23R/IL-22/STAT3 loop, thereby producing serum 
amyloid A which promotes IL-17 production by Th17 cells[102-105]. The importance of the SCFA 
propionate is the augmentation of dendritic cell and macrophage hematopoiesis precursors that impact 
intestinal immunity to control the growth of invading mucosal pathogens[106,107]. A breach in this 
regulation is a central mechanism in triggering, maintaining, and exacerbating IBD. Supplementation 
with another important SCFA, butyrate, rescues deficiencies in mitochondrial respiration and increases 
autophagy in the colonocytes of germ-free mice compared to conventionally raised mice[108]. Due to 
the critical role in repair of gut dysbiosis, the regulation of specific gut bacteria and SCFAs may 
therefore possess significant potential for clinical treatment of IBD.

As introduced above, accumulating evidence suggests a causal interdependence between autophagic 
flux in the intestinal epithelium and gut microbiota colonization. In this regard, CD patients who are 
homozygous for the ATG16L1T300A gene variant exhibit higher abundance of Enterobacteriaceae, Bacter-
oidaceae and Fusobacteriaceae in the inflamed ileum compared with patients homozygous for the wild 
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type ATG16L1 allele[6]. Similar findings have been obtained from mice where expression of the 
autophagy gene Atg7 is genetically knocked out in the gut epithelium, as these mice display altered 
microbial composition with enrichment in Clostridium septum, Eubacterium cylindroides, and Bacteroides 
fragilis compared to wild type mice[109]. ATG16L1T300A variant mice also show changes in fecal 
microbiota composition compared to wild type mice, displaying an increase in the order Bacteroidales, 
which is associated with increased Th17 and Th1 cells in the colon and ileum lamina propria without the 
development of intestinal inflammation[7]. However, Atg5 deficient mice display reduced bacterial 
diversity, as observed in IBD patients, and contain a low number of the Lachnospiraceae, Ruminococ-
caceae, and Akkermansia families that control inflammatory responses[110]. Of note, a role of 
autophagy in regulating intestinal stem cell function and mucosal injury/repair has been demonstrated 
by several recent studies[111,112]. Taken together, these studies highlight a complex causal integration 
between host cell autophagy processes and intestinal microbial communities in regulating intestinal 
homeostasis and injury/repair.

Additionally, infiltrating immune cells such as macrophages and neutrophils responding to gut 
dysbiosis comprise essential components of intestinal wound healing by altering aberrant physiological 
parameters of the local microenvironment, such as microbe-associated molecular patterns (MAMPs) and 
decreased oxygen levels from the formation of reactive oxygen species[86,113-115]. Of note, Toll-like 
receptors (TLRs) expressed on multiple immune cell lineages induce signaling pathways upon binding 
by MAMPs and improve outcomes in experimental mouse colitis models via the promotion of wound 
healing[116,117]. Specific microbes in proximity to the wound bed also activate host epithelial prolif-
erative signaling through a formyl peptide receptor pathway[83,84]. Studies employing a mechanical 
colonic wound method further disclose a protective role for prostaglandin E2 (PGE2) in re-
establishment of the IEB through a TLR2/MyD88-dependent manner[118,119]. A follow-up study from 
the same group shows that in the early repair phase, a TLR2/PGE2 axis is required for barrier 
establishment; however, PGE2 must then decrease to allow for epithelial proliferation and regeneration
[118]. In this context, Jain et al[120] elegantly demonstrates that temporal regulation of the bacterial 
metabolite PGE2/deoxycholate during colonic repair is critical for crypt regeneration[120]. The highly 
specific and time-dependent switching of microbial colonization and signaling pathways can therefore 
act to promote MH in a localized manner.

Several therapeutic approaches have been examined by administration of prebiotics or probiotics to 
regulate the microbiota. For example, butyrate enemas are effective in treating experimental colitis and 
UC patients[121,122]. Also, p40, a protein produced by Lactobacillus rhamnosus GG (LGG), activates host 
epithelial EGFR signaling and mediates wound healing[123]. Of note, the mechanism of MH promotion 
by LGG is via a positive effect on epithelial barrier maturation by upregulation of Claudin-3[124]. 
Recently, genetically modified probiotic bacteria–based precision delivery of human EGF also appears 
to be a promising intervention against mucosal inflammation through crypt-derived MH and barrier 
restoration[125,126]. Firmicutes, such as Faecalibacterium prausnitzii play an essential role in mucosal 
barrier homeostasis by regulating NF-κB activation and IL-8 production[125,126]. In another study, oral 
gavage with Faecalibacterium prausnitzii during dextran sodium sulfate (DSS) colitis improves outcomes 
compared to mice treated with DSS alone, likely due to participation of Claudin-1 and Claudin-2[125]. 
The probiotic mixture known as VSL #3, containing 4 strains of Lactobacilli, 3 strains of Bifidobacteria, and 
one strain of Streptococcus is effective in preventing pouchitis and in treating UC flareups[127]. This 
probiotic functions by partially upregulating mucin production and restoring the IEB by stimulating 
ZO-1 and Occludin expression while decreasing Claudin-2[127]. Taken together, a complex interde-
pendence exists between gut microbiota and MH processes in the promotion of barrier integrity that 
should be fully explored for its intriguing potential in improving clinical outcomes.

Inflammatory Cytokines in IBD and Mucosal Healing
Due to dysregulation of many cytokines and growth factors in IBD and the regulatory importance of 
many of these same molecules in MH, we discuss the potential of altering immune signaling and inflam-
matory cascades in restoring proper intestinal homeostatic balance. Increasing knowledge of the 
coordination of these pathways will contribute to the development of more effective and targeted 
therapies to ameliorate disease while preserving essential immune system function.

Major cytokines and growth factors that are considered pro-inflammatory in IBD include IL-1β, 
interferon-gamma (IFN-γ), TNF-α, and IL-6. During an infection in the gut, IL-1β, TNF-α, and IFN-γ are 
shown to be produced by inflammatory monocytes, among which IL-1β and TNF-α are associated with 
increased IEB permeability[2]. TNF-α and IFN-γ are also produced by ILCs and serve to recruit and 
activate additional inflammatory cells[3]. TNF-α is particularly well-studied and often targeted in the 
treatment of autoimmune diseases as detailed in our discussion of monoclonal antibody therapies 
above. Although necessary for innate immune responses against acute pathogens and acute DSS colitis, 
when produced chronically by T cells TNF-α can be a major contributing factor to the loss of epithelial 
barrier and development of autoimmune disease[128-130]. IFN-γ has been shown to be regulated during 
wound healing of skin epithelium by Tregs, where lack of Tregs resulted in increased IFN-γ, accumu-
lation of pro-inflammatory macrophages, and hindered wound healing[131]. Gut microbiota can also 
impact immune system activation through cytokine signaling. Kuhn et al.[132] demonstrates that intrae-
pithelial lymphocytes (IELs) must interact with commensal Bacteroidales order microbes to produce IL-
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6 in response to acute C. rodentium colitis infection, aiding in repair of the IEB via increased Claudin-1 
expression[132]. Despite the necessary effects of pro-inflammatory cytokines for immune system 
response and homeostasis, each also possesses drawbacks. When the location, amount, or duration of 
cytokine production becomes dysregulated, chronic inflammation and disease can result. IFN-γ, TNF-α, 
and IL-6 are upregulated after secretion by immune cells in the chronic inflammatory state associated 
with IBD[3,130,132]. These cytokines are known to increase gut permeability by altering tight junction 
protein expression[132-134]. In particular, increased IL-6 in the IECs and lamina propria mononuclear 
cells increases Claudin-2, which promotes intestinal permeability and is known to be upregulated in 
IBD[134,135]. Interestingly, it is IELs that produce IL-6 in a protective manner during acute infection 
through the c-Jun N-terminal Kinase pathway, rather than the Mitogen-activated protein kinase/
extracellular signal-regulated kinase pathway, suggesting both duration and cell type-specific layers of 
complexity in the role of IL-6[132,134]. It is likely that similar multi-layer and highly context-specific 
pathways exist for other inflammatory cytokines as well. Therein lies the challenge of harnessing pro-
inflammatory cytokines and signaling pathways in the immune system for MH: Targeting modifications 
toward the decrease of detrimental chronic effects without impairing their beneficial and homeostatic 
functions. Continuing in the discussion of IL-6, global reduction of IL-6 expression can decrease chronic 
inflammation in IBD and enhance MH, but may also increase susceptibility to infection[132,136]. It 
would therefore be ideal to develop a method of reducing IL-6 production in IECs while leaving 
expression in IELs intact to avoid increasing the risk of dangerous infections in patients. The potential in 
fine-tuning inflammatory cytokine expression to promote MH is great, but much work remains to 
ensure it can be accomplished safely without severe detrimental effects to other functions of the immune 
system.

Conversely, several other cytokines, growth factors, and cell types function primarily in an anti-
inflammatory role in IBD and intestinal homeostasis and offer additional mechanisms to enhance MH 
by resolving chronic inflammation. Growth factors and cytokines considered to be anti-inflammatory 
include TGF-β, IL-10, IL-22, and IL-17. TGF-β is a well-studied growth factor that has been 
demonstrated by Beck et al[137]. to play a role in the restitution, or IEC migration, phase of MH, 
evidenced by the lack of IEC migration and impaired wound healing after TGF-β inhibition in DSS 
colitis[8,137]. Additionally, TGF-β when produced by a macrophage secretome called SuperMApo aids 
in removal of apoptotic cells and resolution of inflammation in IBD models[57,138]. Importantly, since 
this secretome produces TGF-β from a singular cell type, rather than globally, its administration can 
provide the context- and location-dependent production of beneficial TGF-β while avoiding potential 
opposing or off-target effects. Macrophages and Th2 cells also produce IL-10, which enhances the prolif-
eration phase of MH, maintains immune tolerance to the many antigens encountered by the IEB, and 
promotes barrier integrity[139,140]. Similarly, the production of IL-17 by anti-inflammatory Tregs helps 
with IEC proliferation and blockage of detrimental microbiota in colitis models, providing protection 
against IBD[141]. One of the major players in protection against IBD is IL-22, which is produced by 
multiple cell types and promotes MH by more than one mechanism, as reviewed in[142]. Most 
importantly in IBD, IL-22 is produced by ILCs, CD4+ T cells, and NK cells, demonstrating activation of 
both the innate and adaptive immune system[143,144]. IL-22 primarily acts on intestinal stem cells 
(ISCs) and IECs and functions by activating STAT3 signaling, which induces IEC proliferation and 
therefore MH[101,142,143,145]. Regarding ISCs, IL-22 both protects them from depletion during 
intestinal inflammation and induces regeneration[101,143,145]. Though some of these cytokines and 
growth factors can be inflammatory under certain circumstances, in the context of IBD they function in 
an anti-inflammatory manner and are beneficial in promoting MH. Some cytokines even demonstrate 
potential to be produced or administered selectively in only beneficial locations or cell types. Therefore, 
anti-inflammatory cytokines and growth factors present promising options for treatment of IBD through 
selectively reducing inflammatory signals and inducing or enhancing the MH process.

CONCLUSION
In recent years, IBD has become increasingly common in the United States and abroad. As progressive 
and debilitating diseases, UC and CD have long-term negative implications on health. In the past, 
treatments have focused on reducing the clinical manifestations of the disease, often leaving underlying 
disease mechanisms active in the gut[12,15]. With increased understanding of the mechanisms and 
complex pathogenesis of IBD, further innovation in treatment approaches must occur to improve 
patients’ long-term outcomes. Subsequently, instead of merely hoping to reduce symptoms, doctors 
now desire therapies that actively aid in healing and regeneration of damaged tissue. MH has therefore 
emerged as the main goal for research and treatment end points to ensure long-term remission, survival, 
and a good quality of life for patients. Going forward, understanding the interactions regulating the 
breakdown and regeneration of the IEB, as well as overarching gut homeostasis processes, will be 
paramount to treating and curing patients with IBD. Monoclonal antibody therapies offer a promising 
start to revolutionizing treatment, aiming not only to reduce clinical manifestations, but also to interrupt 
disease activity on a cellular and molecular level. However, even newly developed antibody therapies 
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cannot by themselves completely resolve IBD and restore total gut homeostasis. Therefore, the three 
approaches to targeting the molecular machinery governing IBD of restoring the IEB, regulating the gut 
microbiota, and altering the cytokine signaling-mediated immune response are all being studied as 
potential mechanisms for achieving MH. Optimal future treatment protocols for IBD will ideally include 
a combination of these approaches, with the intent of restoring intestinal homeostasis by balancing 
expression of multiple proteins and repairing several of the many dysregulated pathways involved in 
IBD pathogenesis.
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