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Abstract

The gastrointestinal (GI) tract harbors the most complex microbial ecosystem in the human 

body. The mucosal layer that covers the GI tract serves as a polymer-based defensive barrier 

that prevents the microbiome from reaching the epithelium and disseminating inside the body. 

Colonization of the mucus may result in the formation of structured polymicrobial communities 

or biofilms, a hallmark in pathologies such as colorectal cancer, inflammatory bowel disease, and 

chronic gut wounds. However, the mechanisms by which multispecies biofilms establish on the 

gut mucosa is unknown. Whether mucus-associated biofilms exist as part of a healthy mucosal 

barrier is still debated. Here, we discuss the impact that diet and microbial-derived polymers 

has on mucus structure and microcolony formation and highlight relevant biophysical forces that 

further shape nascent biofilms.

Introduction

A thick mucus lines the gut epithelium, serving as a barrier to prevent the breach of bacteria 

into the human body. Loss of mucosal integrity, such as through enzymatic degradation, is 

associated with augmented microbial colonization and increased translocation of bacterial 

antigens into the mucosa [1]. Colonization of the mucus layer may also result in the 

formation of structured polymicrobial communities or biofilms. These biofilms are a 

characteristic hallmark of right-sided colorectal cancer tumors and have also been implicated 

in gastrointestinal disorders such as ulcerative colitis and Crohn’s disease [2–4]. Both 

commensal and pathogenic bacteria employ multiple strategies to colonize the mucus, 

including adhesins and lectins that recognize specific glycans contained in the mucin 

glycoproteins, the major constituent of the mucus [5]. However, whether mucus-resident 

bacteria form biofilms as part of a healthy mucosal barrier is still debated [6,7].

Several hypotheses have been put forth to explain the mechanical forces by which biofilms 

are impeded from growing on and within colonic mucus. Computational and experimental 

studies indicate that bacterial adhesion to the mucus might be used by the host to control 

the position and abundance of specific microbes simply through physical restraint [8,9]. 
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Yet, in contrast to abiotic surfaces, where bacterial adhesion is the initial step in biofilm 

initiation [10], bacterial binding to the mucus alone may not support the formation of large 

microcolonies. This is suggested by the low occurrence of biofilms in healthy biopsies. 

Alternative explanations include the mechanical stress exerted by intestinal fluid and stool 

passage, the rapid secretion and shedding of the mucus layer, and the fast turnover rate 

of the epithelium [11,12]. However, there are multiple putative biophysical determinants 

of biofilm formation unaccounted for in this list. Here, we discuss the impact that diet 

and microbial-derived polymers have on mucus structure and microcolony formation and 

highlight relevant biophysical forces contributing to nascent biofilms.

Polymer-mucin interactions shaping the mucosal microenvironment

Mucus is a complex polymer gel rich in mucin glycoproteins, which are responsible for 

its viscoelastic and gel-like properties [13]. Polymer gels form supramolecular networks 

of long polymer strands held together by chemical or physical crosslinks via covalent 

disulfate bridges, non-mucin proteins, Ca2+-mediated links, physical entangles, and low-

energy electrostatic and hydrophobic bonds [14]. At neutral pH, sialic acid, and sulfate 

groups located on mucin glycoproteins make the mucus behave as an anionic polyelectrolyte 

gel [13]. Polyelectrolyte gels undergo strong volume transitions in response to the pH, ion 

strength, and dielectric properties of the solvent [15]. For example, porcine gastric mucin, 

which is homologous to the human gastric mucin, undergoes a dramatic change in viscosity 

(sol-gel transition) at low pH (~ 2), protecting the epithelium from the highly acidic gastric 

juice of the stomach [16].

Like synthetic polymer gels, the mucus network can also collapse or dehydrate osmotically 

when surrounded by solutions of large non-penetrating polymers ingested as ingredients 

in pharmaceutical products, food additives, and dietary fiber. Changes in mucus structure 

present conditions that may alter the penetration and colonization potential of organisms 

within the mucus layer. Datta and colleagues recently measured the change in thickness 

of murine colonic mucus in response to high-molecular-weight (high-Mw) dietary fibers, 

including dextrin, pectin, and pullulan, and neutral polymers, such as polyethylene glycol 

(PEG) [17]. These authors found that both dietary fiber and PEG compressed the murine 

colonic mucus in vivo and ex vivo and demonstrated that this behavior depended on the 

concentration and Mw of these polymers (Figure 1a) [17]. Notably, the gut microbiome 

actively modulated the compression of the colonic mucus in vivo by breaking down 

dietary fibers into small non-compressing polymers [17]. Moreover, the authors found that 

charged polymers such as the food additive carboxymethyl cellulose exerted a higher mucus 

compression when compared to uncharged polymers with similar chemical composition 

[18*]. This behavior was consistent with a Donnan mechanism, in which mobile ions are 

partitioned outside the mucus layer by charged polymers, driving the flux of water out of the 

mucus network [18*].

Although these experiments did not measure changes in mucus rheology, we infer that 

polymer-induced osmotic compression can reduce mucus viscosity (i.e. its transition from a 

watery gel to an elastic solid). Mucus compression at the same time may affect the clearance 

and diffusion properties of the mucus network, increasing the residence time of mucosal 
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microbes, and thus, contributing to biofilm initiation. This is supported by the prevalence 

of biofilms in the dehydrated airway mucus of cystic fibrosis (CF) patients. In the airways, 

densely tethered mucins in the periciliary layer transport the mucus and inhaled particles 

out the lungs. Mucus clearance fails when dehydrated mucus osmotically compressed the 

periciliary layer, causing the cilia to collapse [19]. With an impaired clearance system, 

the dehydrated mucus creates a favorable niche in which Pseudomonas aeruginosa can 

thrive and evade the host immune defenses. Specifically, dehydrated mucus in the airways 

restricts bacterial motility and molecular diffusion, resulting in high local bacterial densities 

with high concentrations of quorum-sensing signaling molecules; limits the diffusion of 

antimicrobial molecules like lactoferrin secreted by submucosal glands; and impairs the 

ability of neutrophils to penetrate and eradiate the P. aeruginosa microcolonies [20].

Extracellular polymeric substances (EPS) secreted by microorganisms in biofilms can 

also drive bacterial surface motility and biofilm growth by generating osmotic pressure 

gradients in the extracellular space [21]. EPS-generated osmotic pressure may provide 

bacteria cells in the biofilm with the force to move through the mucus layer, coordinated 

simultaneously by the enzymatic degradation of mucin glycoproteins. Bacterial motility 

generated by EPS-driven osmotic pressure has been demonstrated in vitro in Bacillus subtilis 

and Vibrio cholerae biofilms on agar plates [21,22]. Importantly, this motility mechanism 

is independent of flagella-mediated functions and is controlled only by the content and 

crosslinking density of the exopolysaccharides that form the biofilm matrix (Figure 1b) [22]. 

Because the mucus layer possesses gel-like properties, similar osmotic effects may also 

influence V. cholerae colonization and biofilm expansion in the human gut [22].

In contrast to large non-penetrating polymers, there are numerous polymers used to 

transport drugs across the mucus barrier that can infiltrate, aggregate, or form complexes 

with mucin glycoproteins [23]. The magnitude of those interactions depends on several 

factors, including the conformational adaptation, flexibility, and Mw of the penetrating 

polymer, and the magnitude of the electrostatic interactions, hydrogen bonding, hydrophobic 

interactions, and physical entanglement between the polymer and mucin [24,25]. For 

example, high-Mw chitosan, a mucoadhesive cationic polysaccharide, associates with 

mucin, forming complexes with sizes ranging between 200 and 900nm. These complexes 

vary in size as a function of the chitosan-to-mucin mass ratio and their mutual electrostatic 

neutralization, indicating that the mucin-chitosan interactions are mostly electrostatic [25]. 

However, molecular mass and chain flexibility (determined by the charge density) also 

play a significant role in the complex formation (Figure 1c) [25]. The high affinity of 

chitosan towards mucin reduces the mucin’s relative viscosity. When combined, these 

macromolecules decrease in hydrodynamic volume, probably resulting in the formation of 

pores or the contraction of the mucus network in vivo [25].

The interaction between penetrating polymers and mucus is likely relevant to biofilm 

initiation in the colonic mucus because most of the exopolysaccharides secreted by EPS-

producing microorganisms contain charged polysaccharides and proteins. Thus, they can 

exhibit the same associative and infiltrating capabilities as penetrating polymers, supporting 

persistence in the mucus layer and possibly biofilm formation. For example, the cationic 

exopolysaccharide Pel secreted by P. aeruginosa crosslinks with eDNA, forms aggregates 
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with mucin glycoproteins, and provides structural stability to nascent biofilms in the lungs 

[26]. Similarly, the cationic exopolysaccharide poly-N-acetylglucosamine (PNAG) produced 

by Staphylococcus epidermis can interact with synthetic polymeric brushes made of poly(l-

lysine)-graft-poly(ethylene glycol), which is an antiadhesive coating that resists protein 

adsorption, suggesting that bacterial exopolysaccharides can penetrate and interact with 

other polymeric systems through analogous physical mechanisms [27].

Other aspects of polymers, in addition to their charge, affect their interactions with 

the mucus. For example, the interaction strength between mucin and negatively charged 

polymers (polyanions), like pectin and alginate, depend on the degree of chain flexibility 

and Mw [24]. Stiff (determined by the persistence length) and low-Mw polyanions 

preferably interact with the mucin’s hydrophobic globular regions, whereas flexible and 

high-Mw polyanions bridge distance sites in the mucin, reducing the mucin’s hydrodynamic 

volume and viscosity (Figure 1c). Neutral polysaccharides like dextran and Streptococcus 

thermophilus-derived exopolysaccharide do not interact with mucin [24]. However, dextran 

sodium sulfate (DSS) is more mucoadhesive than dextran, due to sulfate groups that enhance 

its polyelectrolyte properties [24]. Interestingly, DSS is widely used in mouse models of 

inflammatory bowel disease because of its capacity to disrupt epithelial and mucosal barriers 

[28]. Histological examination of colitis induced by DSS indicates that severity of disease 

depends on the charge and Mw of this polyelectrolyte [29]. DSS with a Mw of 500 kDa 

does not produce colitis in mice possibly because it is excluded from the mucus barrier, like 

large-non penetrating polymers. In contrast, 5 kDa and 40 kDa DSS induce colitis in the 

upper and lower colon, respectively [29].

Biophysical forces acting on mucus-resident bacterial communities

Biofilms have traditionally been studied as large aggregates of up to 1200 µm forming 

surface-attached mushroom-like structures [30]. Except for oral plaque, in vivo biofilms 

are embedded in host-derived macromolecules, in which they form small aggregates 

or microcolonies with sizes that range between 5 to 200 µm [30]. Cystic fibrosis 

infections, osteomyelitis, ulcerative colitis, and chronic wound infections are examples 

where matrix-embedded biofilms are present [4,31–33]. Bacteria embedded in host-derived 

macromolecules (e.g., mucus) can be aggregated into microcolonies by two distinct physical 

mechanisms that do not require canonical biofilm-forming functions: depletion aggregation 

and bridging aggregation [34,35**]. These forces result in the formation of spatially 

segregated communities of bacteria without requiring them to carry out cell division.

In depletion aggregation, nonadsorbing polymers generate mutual attraction forces between 

neighboring cells. This attraction results from the loss of conformational entropy of 

the polymer segments in the volume separating neighboring cells. As a result, the 

polymer segments are excluded from this intercellular gap creating an unbalanced osmotic 

pressure that pushes the cells together into clusters (Figure 2a)[34]. The entropically-

driven aggregation of P. aeruginosa by mucin is one of many examples where biofilm 

assembly functions are not required for microcolony formation [35**]. Moreover, depletion 

aggregation is enhanced when polymer concentration and cell numbers increase [34]. 

However, when two or more nonadsorbing polymers are mixed, depletion aggregation can 
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occur at low cell numbers [35**]. This is the case early in the development of CF, where 

physiologically relevant polymer mixtures of mucin, DNA, and F-actin present in CF airway 

secretions can aggregate P. aeruginosa at concentrations as low as 105 CFU/mL [35**]. 

Bridging aggregation, on the other hand, arises when adsorbing polymer segments act as a 

scaffold by connecting neighboring cells via electrostatic attraction. Since bacteria usually 

carry a negative charge at physiological pH due to the presence of surface structures such as 

lipopolysaccharides, cationic polymers including chitosan and PNAG (an exopolysaccharide 

secreted by many pathogens), can promote cell-cell attachment by bridging aggregation 

[35**,36]. Unlike bacterial genes that play a role in biofilm formation, both of these cell 

aggregation processes are intrinsic to mucus physical properties.

Microcolonies embedded on the colonic mucus may also experience compression and 

shear forces that can prompt biofilm formation. For example, recent studies suggest that 

compression forces experienced by uropathogenic Escherichia coli when confined into 

small spaces lead to the upregulation of exopolysaccharides and the expression of biofilm-

associated cell-surface structures like curli [37*]. Moreover, shear forces derived from fluid 

flow do not merely wash bacteria out of the body. Instead, bacterial movement is affected 

by the gradients in fluid velocity, which exert additional force and torque [38], promoting 

different motile responses from the bacteria. For motile, rod-shaped bacteria, hydrodynamic 

shear rates promote a sessile and surface-attached lifestyle over free-swimming [39]. This 

shear-induced trapping results from the interplay between the cell aspect ratio, bacterial 

motility, and flow velocity gradients, which affect the swimming direction of single cells to 

areas with low velocity but high shear rates (i.e., nearby a microchannel sidewalls) [39]. In 

nascent V. cholera biofilms, fluid flow also causes bacterial cells to organize perpendicular 

to the flow direction, resulting in three-dimensional aggregates with a vertically aligned core 

[40*]. In vitro assays have been instrumental in connecting the effects of mechanical forces 

on cells and the response of individual cells to these nano- and micro-scale forces.

The responses of pathogenic bacteria to mechanical forces within their microenvironment 

challenge our common-sense intuition about the action of fluid flow on the bacterial 

colonization dynamics. Infective endocarditis (IE) involves bacterial colonization of heart 

valves, a microenvironment characterized by high shear forces and turbulent blood flow. 

In this condition, Staphylococcus aureus uses a family of cell-wall anchored adhesins 

(e.g., clumping factor (Clf) A and B,) that undergo dynamic force-induced extension 

and conformational changes in response to tensile force [41,42]. At high flow rates, 

these force-sensitive molecular switches increase the adhesion strength of S. aureus to 

platelets and host blood proteins, such as fibronectin, fibrinogen, and von Willebrand factor, 

allowing this pathogen to colonize both inflamed and damaged heart valves [42,43]. In 

contrast, low mechanical tension triggers receptor/ligand dissociation, facilitating bacterial 

dispersion [41]. Force-sensitive molecular switches, known as catch-bonds, are widespread 

among both pathogens and commensals. They also control the adhesion strength of 

uropathogenic Escherichia coli to mannose residues on epithelial cells [44], the binding 

force of Streptococcus pneumoniae to collagen I [45], and the adhesion resistance of 

Ruminococcus champanellensis to cellulose fibers in the gut [46**]. Besides mechanical 

interactions with extracellular macromolecules and EPS matrix components, direct cell-

cell interactions can also contribute to inter and intraspecies aggregation, especially in 
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polymicrobial communities. For example, in the oral cavity, the ability to aggregate 

intergenerically determines the succession of genera that colonize the teeth and gingiva, 

with bacterial species like Fusobacterium nucleatum serving as a bridge microorganism 

between early and late colonizers [47]. F. nucleatum uses a repertoire of surface-attached 

adhesins, including Fap2, RadD, and Cmp2, that physically links multiple species in the 

oral cavity, thus stabilizing the developing dental plaque [48,49]. Compared to catch bonds, 

direct measurement of adhesion forces between F. nucleatum and its coaggregating partners 

has not been performed.

Concluding remarks

The mechanism by which biofilms can form in the colonic mucus is far from understood. 

In this review, we emphasize the physical principles underlying the gel-like properties 

of the mucus barrier that contribute to this process. Robust structural transitions of the 

mucus network such as polymer-induced compression and viscosity loss may act against 

mechanical forces that prevent biofilms from forming, including mucus shedding and 

mechanical clearance by the passage of lumenal contents. Moreover, intrinsic physical 

properties of the mucus layer, together with microenvironmental factors and microbial 

activities, can further promote biofilm growth, for example, through depletion aggregation, 

compression-induced EPS production, and EPS-driven biofilm expansion. Future studies are 

needed to unveil the crosstalk between polymer-intrinsic and bacteria-intrinsic properties 

that enable the formation of mucus-invasive biofilms. Characterizing these factors will 

contribute to our understanding of the host-microbial interactions at intestinal epithelium 

and to the development of better prophylaxis to prevent the formation of deleterious 

biofilms.
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Figure 1. Interactions of mucin with non-penetrating and infiltrating polymer solutions as a 
function of their molecular weight, concentration, flexibility, and charge.

(a) Non-penetrating high-molecular-weight (Mw) polymers osmotically compress the mucus 

layer. High-Mw polyelectrolytes achieve a higher compression due to mobilization of 

counterions. (b) Extracellular polymeric substances (EPS, in green) and proteins (red dots) 

generate osmotic forces that contribute to biofilm expansion. (c) Penetration of the mucus 

network by positively charged (polycationic), negatively charged (polyanionic), and neutral 

polymers and their effect on mucin’s relative viscosity as determined by changes in its 

hydrodynamic volume and as a function of mucin to polymer concentration. The dashed 

circles represent the changes in the mucin’s hydrodynamic volume.
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Figure 2. Biophysical forces influencing biofilm formation.

(a) Depletion and bridging aggregation of bacteria induced by mucin and bacterial 

exopolysaccharides. Polymer segments are illustrated as coils, whereas the depletion layer 

(left panel) is indicated by the dashed line around the aligned cells. Notice that in depletion 

aggregation, the polymer segments cannot approach the cell surface for a distance shorter 

than its radius of gyration. In bridging aggregation (right panel), polymer coils absorb 

to the cell surface, linking together neighboring cells via electrostatic interactions. (b) 

Compression forces that biofilms may experience when growing on and within the mucus 

layer. In uropathogenic Escherichia coli, compression forces upregulate EPS production. (c) 

Fluid flow-induced verticalization of bacteria favors the formation of 3D assemblies in vitro. 

(d) Catch bonds undergo dynamic force-induced extension and conformational changes 

in response to tensile force and are widespread among both pathogens and commensals. 

(e) Cell-to-cell interactions are critical during the formation of complex, highly structured 

polymicrobial biofilms such as those formed on teeth’s supra- and subgingival areas and 

may also contribute to the mechanics of in vivo biofilms.
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